Natural Products
I wish to dedicate this book to honor Professor Arnold L. Demain’s 60 years experience as a pioneer and a mentor in the field of natural product-based drug discovery. In 1954, he received his PhD from the University of California, Davis and Berkeley, in Microbiology, and joined Merck and Co. as a research microbiologist. By 1965, he had become the Founder and Head of the Department of Fermentation Microbiology at Merck. In 1969, he became a full Professor at MIT. He was elected to the National Academy of Sciences in 1994. Arny is one of the world’s leading industrial microbiologists and a pioneer in research on the elucidation and regulation of the biosynthetic pathways leading to penicillins and cephalosporins. He has led the way to the development of the β-lactam industry. His current interests are in the area of industrial microbiology and biotechnology, including industrial fermentation, antibiotics, enzymes, secondary metabolism, biofuels, and bioconversions. During his tenure, Arny trained a group of visiting scholars, postdocs, and students from all over the world, which is now internationally renowned as “Arny’s Army.” Approximately every 2 years, there is a unique scientific symposium, bringing together key academic and industrial professionals in industrial microbiology and biotechnology, called “A Celebration of Arny’s Army & Friends.” Continuing the success of the four previous meetings (in 1995 in Cambridge, Massachusetts; in 1997 in Nara, Japan; in 1999 in Gent, Belgium; and in 2001 in Merida, Mexico), the fifth symposium will be held in Shanghai, China on June 27–29, 2005.

Arny is a tireless advocate who would use every possible opportunity to promote natural product-based drug discovery. His vision, inspiration, and leadership contributed significantly to the soon-to-come renaissance of natural products. As we reflect on the history, it is abundantly clear that we benefit from his wisdom to this day.

Lixin Zhang, PhD
We thank all the contributors for their support of this project. In addition, we thank Production Editor Tracy Catanese from Humana Press, Inc. for her assistance, guidance, many helpful discussions, as well as her encouragement to finish this book on time. Special thanks to Professors Marcia S. Osburne, Guangyi Wang, Richard Roberts, John Collier, John M. Barberich, and G. Alexander Fleming for their help in editing the book and supporting the work. We are indebted to our wives Jun Kuai and Jody and Lixin’s children Peijin and Powell, as well as Lixin’s parents-in-law Jingyuan Kuai and Lanying Yu for their encouragement and moral support. Finally, we would like to express our gratitude and appreciation to the staff at Humana Press for their fine work in turning the manuscript into a finished book.

Lixin Zhang, PhD
Arnold L. Demain, PhD
It seems appropriate to emphasize the topic of natural products at a time when new compounds are desperately needed to combat the current problems of antibiotic resistance, emergence of new diseases, continued presence of old, unconquered diseases, and the toxicity of certain present-day medical products. Despite such needs, today’s output from the pharmaceutical industry has decreased markedly as a result of mega-mergers among the large pharmaceutical companies, and the downgrading of natural-product discovery efforts in favor of high throughput screening of synthetic compounds made by combinatorial chemistry. The latter may appear surprising because at least half of the antibiotics and antitumor agents approved by the FDA have been natural products, derivatives of natural products, or synthetic compounds inspired by natural product chemistry. However, it is a matter of economics. The extremely high costs to the large companies of purchasing or developing genomics, proteomics, and bioinformatics have left little funding available for the more tedious screening of natural products. Even so, there is some hope. The continuing success of biopharmaceutical products from the biotechnology industry points to the ever-increasing success of natural compounds, albeit that of large molecules. Some of these smaller companies are directing part of their efforts toward small-molecule natural-product screening. A few are emphasizing biodiversity by either harnessing environmental DNA in the metagenomic effort or discovering means of growing the uncultured microbes of the past and learning how to induce secondary metabolism in these organisms. Other companies are emphasizing combinatorial biosynthesis to yield new derivatives or DNA shuffling to rapidly increase the levels of production. Future success is not a matter of the old vs the new; it is dependent on learning how to apply the exciting methodologies of genomics, proteomics, combinatorial chemistry, DNA shuffling, combinatorial biosynthesis, biodiversity, bioinformatics, and high-throughput screening to rapidly evaluate the activities in extracts as well as purified components derived from microbes, plants, and marine organisms.

There have been concomitant advances and an explosion of information in the field of natural products and it is therefore timely to review both basic and applied aspects. *Natural Products: Drug Discovery and Therapeutic Medicine* addresses historical aspects of natural products and the integration of approaches to their discovery, microbial diversity, specific groups of products (Chinese herbal drugs, antitumor drugs from microbes and plants, terpenoids, and arsenic compounds), specific sources (the sea, rainforest endophytes, and Ecuadorian biodiversity), and methodology (high-performance liquid chromatography profiling, combinatorial biosynthesis, genomics, bioinformatics, and strain improvement by modern genetic manipulations). We consider past successes, the excitement of the present, and our thoughts on the future. We hope that this book will inspire industrial and academic researchers, practitioners, and developers, as well as administrators, to look again at Nature for the future gifts that will solve unmet medical needs and make the world a safer place in which to live.

*Lixin Zhang, PhD
Arnold L. Demain, PhD*
Contents

DEDICATION .. V

ACKNOWLEDGMENT ..VII

PREFACE .. IX

CONTRIBUTORS... XIII

Part I Fundamental Issues Related to Natural Product-Based Drug Delivery

1 Natural Products and Drug Discovery
 Arnold L. Demain and Lixin Zhang .. 3

Part II Strategies

2 Integrated Approaches for Discovering Novel Drugs From Microbial Natural Products
 Lixin Zhang .. 33

3 Automated Analyses of HPLC Profiles of Microbial Extracts: A New Tool for Drug Discovery Screening
 José R. Tormo and Juan B. García ... 57

4 Manipulating Microbial Metabolites for Drug Discovery and Production
 C. Richard Hutchinson .. 77

5 Improving Drug Discovery From Microorganisms
 Chris M. Farnet and Emmanuel Zazopoulos ... 95

6 Developments in Strain Improvement Technology: Evolutionary Engineering of Industrial Microorganisms Through Gene, Pathway, and Genome Shuffling
 Stephen B. del Cardayré .. 107

Part III Specific Groups of Drugs

7 The Discovery of Anticancer Drugs From Natural Sources
 David J. Newman and Gordon M. Cragg .. 129

8 Case Studies in Natural-Product Optimization: Novel Antitumor Agents Derived From Taxus brevifolia and Catharanthus roseus
 Jian Hong and Shu-Hui Chen .. 169

9 Terpenoids As Therapeutic Drugs and Pharmaceutical Agents
 Guangyi Wang, Weiping Tang, and Robert R. Bidigare .. 197

10 Challenges and Opportunities in the Chinese Herbal Drug Industry
 Wei Jia and Lixin Zhang ... 229
11 Arsenic Trioxide and Leukemia: From Bedside to Bench
Guo-Qiang Chen, Qiong Wang, Hua Yan, and Zhu Chen .. 251

PART IV MICROBIAL DIVERSITY

12 New Methods to Access Microbial Diversity for Small Molecule Discovery
Karsten Zengler, Ashish Paradkar, and Martin Keller .. 275

13 Accessing the Genomes of Uncultivated Microbes for Novel Natural Products
Asuncion Martinez, Joern Hopke, Ian A. MacNeil, and Marcia S. Osburne 295

PART V SPECIFIC SOURCES

14 New Natural-Product Diversity From Marine Actinomycetes
Paul R. Jensen and William Fenical ... 315

15 Novel Natural Products From Rainforest Endophytes
Gary Strobel, Bryn Daisy, and Uvidelio Castillo ... 329

16 Biological, Economic, Ecological, and Legal Aspects of Harvesting Traditional Medicine in Ecuador
Alexandra Guevara-Aguirre and Ximena Chiriboga .. 353

INDEX .. 371
Contributors

ROBERT R. BIDIGARE, PhD • Department of Oceanography, School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, HI

GUO-QIANG CHEN, PhD • Dept. of Pathophysiology, Shanghai Second Medical University, and Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China

SHU-HUI CHEN, PhD • Discovery Chemistry Research & Technology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN

ZHU CHEN, PhD • Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai, People’s Republic of China

XIMENA CHIRIBOGA, PhD • Fundación GEA, Proyectos Ambientales; and Extracta Ecuador S.A., Quito, Ecuador

STEPHEN B. DEL CARDAYRÉ, PhD • Codexis, Redwood City, CA

UVIDELIO CASTILLO, PhD • Department of Plant Sciences, Montana State University, Bozeman, MT

GORDON M. CRAGG, DPhil • Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI-Frederick, MD

BRYN DAISY, BS • Department of Plant Sciences, Montana State University, Bozeman, MT

ARNOLD L. DEMAIN, PhD • Charles A. Dana Research Institute (R.I.S.E.), Drew University, Madison, NJ

CHRIS M. FARNET, PhD • Ecopia BioSciences Inc., Montreal, Quebec, Canada

WILLIAM FENICAL, PhD • Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA

JUAN B. GARCÍA • Centro de Investigación Básica (CIBE), Merck Research Laboratories (MRL), Merck, Sharp & Dohme de España S.A., Madrid, Spain

ALEXANDRA GUEVARA-AGUIRRE • Fundación GEA, Proyectos Ambientales; and Extracta Ecuador S.A., Quito, Ecuador

JIAN HONG, PhD • Discovery Chemistry Research & Technology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN

JOERN HOPKE, PhD • Cambridge Genomics Center, Aventis Pharmaceuticals Inc., Cambridge, MA

C. RICHARD HUTCHINSON, PhD • Kosan Biosciences, Hayward, CA

PAUL R. JENSEN, MS • Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA

WEI JIA, PhD • School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
Martin Keller, PhD • Diversa Corporation, San Diego, CA
Ian A. MacNeil, PhD • ActivBiotics, Inc., Lexington, MA
Asuncion Martinez, PhD • Massachusetts Institute of Technology, Cambridge, MA
David J. Newman, DPhil • Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI-Frederick, MD
Marcia S. Osburne, PhD • ActivBiotics, Inc., Lexington, MA
Ashish Paradkar, PhD • Diversa Corporation, San Diego, CA
Gary Strobel, PhD • Department of Plant Sciences, Montana State University, Bozeman, MT
Weiping Tang, PhD • Department of Chemistry, Stanford University, Stanford, CA
José R. Tormo, PhD • Centro de Investigación Básica (CIBE), Merck Research Laboratories (MRL), Merck, Sharp & Dohme de España S.A., Madrid, Spain
Guangyi Wang, PhD • Hawaii Natural Energy Institute, Department of Oceanography, School of Ocean and Earth Sciences and Technology, University of Hawaii at Manoa, Honolulu, HI
Qiong Wang, PhD • Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai, People’s Republic of China
Hua Yan, MD, PhD • Shanghai Institute of Hematology, Rui-Jin Hospital, Shanghai Second Medical University, Shanghai, People’s Republic of China
Emmanuel Zazopoulos, PhD • Ecopia BioSciences, Inc., Montreal, Quebec, Canada
Karsten Zengler, PhD • Diversa Corporation, San Diego, CA
Lixin Zhang, PhD • Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China, and SynerZ Pharmaceuticals Inc., Lexington, MA